Modeling and control of an open accumulator Compressed Air Energy Storage (CAES) system for wind turbines
نویسندگان
چکیده
This paper presents the modeling and control for a novel Compressed Air Energy Storage (CAES) system for wind turbines. The system captures excess power prior to electricity generation so that electrical components can be downsized for demand instead of supply. Energy is stored in a high pressure dual chamber liquid-compressed air storage vessel. It takes advantage of the power density of hydraulics and the energy density of pneumatics in the ‘‘open accumulator’’ architecture. A liquid piston air compressor/ expander is utilized to achieve near-isothermal compression/expansion for efficient operation. A cycleaverage approach is used to model the dynamics of each component in the combined wind turbine and storage system. Standard torque control is used to capture the maximum power from wind through a hydraulic pump attached to the turbine rotor in the nacelle. To achieve both accumulator pressure regulation and generator power tracking, a nonlinear controller is designed based on an energy based Lyapunov function. The nonlinear controller is then modified to distribute the control effort between the hydraulic and pneumatic elements based on their bandwidth capabilities. As a result, liquid piston air compressor/expander will loosely maintain the accumulator pressure ratio, while the down-tower hydraulic pump/motor precisely tracks the desired generator power. This control scheme also allows the accumulator to function as a damper for the storage system by absorbing power disturbances from the hydraulic path generated by the wind gusts. A set of simulation case studies demonstrate the operation of the combined system when the nonlinear controller is utilized and illustrates how this system can be used for load leveling, downsizing electrical system and maximizing revenues. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Security-Constrained Unit Commitment Considering Large-Scale Compressed Air Energy Storage (CAES) Integrated With Wind Power Generation
Environmental concerns and depletion of nonrenewable resources has made great interest towards renewable energy resources. Cleanness and high potential are factors that caused fast growth of wind energy. However, the stochastic nature of wind energy makes the presence of energy storage systems (ESS) in wind integrated power systems, inevitable. Due to capability of being used in large-scale sys...
متن کاملCombined Optimal Design and Control of a near Isothermal Liquid Piston Air Compressor/expander for a Compressed Air Energy Storage (caes) System for Wind Turbines
The key component of Compressed Air Energy Storage (CAES) system is an air compressor/expander. The roundtrip efficiency of this energy storage technology depends greatly on the efficiency of the air compressor/expander. There is a trade off between the thermal efficiency and power density of this component. Different ideas and approaches were introduced and studied in the previous works to imp...
متن کاملDraft: Nonlinear Controller Design with Bandwidth Consideration for a Novel Compressed Air Energy Storage System
To achieve both accumulator pressure regulation and generator power tracking for a Compressed Air Energy Storage (CAES) system, a nonlinear controller designed base on an energy based Lyapunov function. The control inputs for the storage system are the pump/motor displacements inside the hydraulic transformer and the liquid piston air compressor/expander. While the pump/motor inside the liquid ...
متن کاملDynamic Modelling of a Compressed Air Energy Storage System in a Grid Connected Photovoltaic Plant
The use of photovoltaic (PV) cells in domestic and industrial applications has grown rapidly through the recent years. Constructing PV plants is a very smart measure to produce free electricity in large scales, especially in the countries with higher solar irradiation potential. On the other hand, compressed air energy storage (CAES) has already been proposed to be employed for energy storage a...
متن کاملStochastic Assessment of the Renewable–Based Multiple Energy System in the Presence of Thermal Energy Market and Demand Response Program
The impact of different energy storages on power systems has become more important due to the development of energy storage technologies. This paper optimizes the stochastic scheduling of a wind-based multiple energy system (MES) and evaluates the operation of the proposed system in combination with electrical and thermal demand-response programs and the three-mode CAES (TM-CAES) unit. The prop...
متن کامل